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Abstract

Potential function approaches to robot navigation pro-
vide an elegant paradigm for expressing multiple con-
straints and goals in mobile robot navigation problems
[9]. As an example, a simple reactive navigation strat-
eqy can be generated by combining repulsion from ob-
stacles with attraction to a goal. Advantages of this
approach can also be extended to multi-robot teams. In
this paper we present a new class of potential functions
for multiple robots that enables homogeneous large-
scale robot teams to arrange themselves in geometric
formations while navigating to a goal location through
an obstacle field. The approach is inspired by the way
molecules “snap” into place as they form crystals; the
robots are drawn to particular “attachment sites” po-
sitioned with respect to other robots. We refer to these
potential functions as “social potentials” because they
are constructed with respect to other agents. Initial
results, generated in stmulation, illustrate the viability
of the approach.

1 Introduction

The flocking, schooling and herding behaviors we see
in nature benefit the animals that use them in various
ways. Each animal in a herd, for instance, benefits by
minimizing its encounters with predators [15]. Forma-
tion is also useful in group tasks where sensor assets
are limited. Formations allow individual team mem-
bers to concentrate their sensors across a portion of
the environment, while their partners cover the rest.
Air Force fighter pilots for instance, direct their visual
and radar search responsibilities depending on their
position in a formation [7]. Formation maintenance
is applicable in many other domains such as search
and rescue, agricultural coverage tasks and security
patrols. To address a wide range of multi-robot tasks
we seek a formation strategy that provides:
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e scalability: the approach should easily scale to any
number of agents,

e locality: the behaviors should depend only on the
local sensors of each agent,

o flexibility: the behaviors should be flexible so as to
support many formation shapes.

To provide these features we introduce a new behavior-
based approach to robot formation-keeping. The new
strategy is based loosely on the way molecules form
crystals. From the point of view of each robot in the
group, every other robot has several local “attach-
ment sites” other robots may be attracted to. This
type of attachment site geometry roughly corresponds
to molecular covalent bonding [1]. Just as different
crystal shapes result from different covalent bond ge-
ometries, robot formation shapes are influenced by the
attachment site geometries employed. Figure 1 illus-
trates the four attachment site geometries examined in
this work. An example of two robots using the tech-
nique to move into formation is provided in Figure 2.

The overall behavior of the robots is determined
through superposition of several potential functions
coded as motor schemas [9, 2] (e.g. avoid_obstacle,
move_to_goal and so on). The formation component
of behavior depends on the locations of other nearby
robots. We refer to this type of potential function,
constructed with regard to other robots, as a “social
potential” to distinguish it from other types of func-
tions for robot navigation (e.g. repulsion from obsta-
cles).

1.1 Related work

An early application of artificial formation behavior
was the behavioral simulation of flocks of birds and
schools of fish for computer graphics. Results in this
area originated in Craig Reynolds work [14]. He devel-
oped a simple egocentric behavioral model for flock-
ing which is instantiated in each member of the sim-
ulated group of birds (or “boids”). A contribution of
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Figure 1: From the point of view of each robot in the group, every other robot has several local “attachment
sites” other robots may be attracted to. Attachment site geometries for different formations are illustrated above.
From left to right: diamond, line, column and square. Robots are represented as five-sided polygons moving from

left to right; attachment sites are shown with small circles.

Reynold’s work is the generation of successful over-
all group behavior while individual agents only sense
their local environment and close neighbors.

L.

Figure 2: Example of how agents are attracted to the

“attachment sites” of other robots. In this example,
two robots using a column attachment site geometry
move into position.

The components of Reynolds’ flocking behaviors are
similar in philosophy to the motor schema paradigm
used here; but his approach is concerned with the gen-
eration of visually realistic flocks and herds for large
numbers of simulated animals, a different problem do-
main than the one this research addresses. In contrast,
our research studies the problem of organizing robots
in specific geometric arrangements.

The dynamics and stability of multi-robot formations
have drawn recent attention [16, 6]. Their research
centers on the analysis of group dynamics and stabil-
ity, and does not provide for obstacle avoidance. In
the approach forwarded in this article however, geo-
metric formations are specified in a similar manner,
but formation behaviors are fully integrated with ob-
stacle avoidance and other navigation behaviors.

Other recent related papers on formation control for
robot teams include [10, 8, 13, 18, 17]. Mataric’s
work shows that simple behaviors like avoidance, ag-
gregation and dispersion can be combined to create

an emergent flocking behavior in groups of wheeled
robots [10]. Parker’s thesis [13] concerns the coordi-
nation of multiple heterogeneous robots. Of particular
interest 1s Parker’s work in implementing “bounding
overwatch,” a military movement technique for teams
of agents; one group moves (bounds) a short distance,
while the other group overwatches for danger. Yoshida
[18], and separately, Yamaguchi [17], investigate how
robots can use only local communication to generate
a global grouping behavior. Similarly, Gage [8] exam-
ines how robots can use local sensing to achieve group
objectives like coverage and formation maintenance.

In the work most closely related to this research,
Parker simulates robots in a line-abreast formation
navigating past waypoints to a final destination [12].
The approach includes a provision for obstacle avoid-
ance, but performance in the presence of obstacles is
not reported. Parker’s results suggest that perfor-
mance is improved when agents combine local con-
trol with information about the leader’s path and
the team’s goal. This research is distinguished from
Parker’s in that we are concerned with supporting
many types of formation geometries.

In earlier work we presented a formation strategy for
teams of up to four unmanned ground vehicles (UGVs)
intended to be fielded as a scout unit by the U.S. Army
[5]. Contributions of this earlier work include behav-
iors for four-robot diamond, line, column, and wedge
formations and a performance analysis of each forma-
tion type in turns and across obstacle-strewn terrain.
The approach has been demonstrated on laboratory
robots and on three UGVs in the Army’s UGV Demo
IT program. The technique is still incorporated in the
ongoing UGV Demo III program [11].

The earlier technique works well, but has several limi-
tations. First, the approach only supports formations
for two to four robots. Extending it to larger groups



of agents is possible, but requires the generation of a
template for each number of robots and each forma-
tion geometry. Second, each robot has a specifically
designated position in the formation. In some situa-
tions robots must cross each others’ path to position
themselves correctly in the formation. This is appro-
priate for some applications, but in general it is proba-
bly more efficient for the closest robot to fill any given
position. Both of these problems are addressed by the
new technique presented here.

2 Behaviors for formation

2.1 Overview

The formation behaviors are implemented as motor
schemas using the Clay library [2, 3]. Each compo-
nent of the task (e.g. move to the goal, avoid ob-
stacles) is coded as a separate process (schema) that
outputs a vector indicating which direction the robot
should travel. Each vector’s magnitude indicates the
relative importance the associated schema (this may
vary over time). The resultant vectors are summed
for final output to command the robot’s movement.
The approach is similar to potential field navigation
initially proposed by Khatib [9].

The formation component of the robots’ behavior
is accomplished in two steps: first, a perceptual
process, detect formation_position, determines the
robot’s proper position in formation based on cur-
rent sensor data; second, the motor process main-
tain_formation, generates motor commands to di-
rect the robot toward the correct location. The motor
schema paradigm enables the formation behavior to
be simultaneously active in combination with other
navigation behaviors.

The overall navigational strategy integrates the for-
mation behavior with other navigational schemas in
a manner similar to the approach developed in ear-
lier research [5]. The motor schemas move_to_goal,
avoid_static_obstacles, avoid_robots and main-
tain_formation implement the overall behavior for
a robot to move to a goal location while avoiding ob-
stacles, collisions with other robots and remaining in
formation. An additional background schema, noise,
serves as a form of reactive “grease”, dealing with
some of the problems endemic to purely reactive nav-
igational methods such as local maxima, minima and
cyclic behavior [2].

The key extension that distinguishes the new forma-
tion behavior from previous work is the perceptual

technique used to determine the proper formation po-
sition for each robot. Instead of having each agent
assigned to a particular position as in the previous
approach there are a number of available locations for
each robot in the formation.

Each attachment site geometry is characterized by
three parameters:

e 7, the distance from the center of the robot to
each attachment site,

e N, the number of sites available, and

e 0, the offset in degrees with respect to the front
of the robot (straight ahead) where the first site
1s positioned.

We assume the N sites are positioned uniformly
around each robot. In the example geometries pre-
sented here, » = 1.5 meters in all cases; N = 2 for
column and line geometries and N = 4 for diamond
and square; 8§ = 0° for column and square, 8§ = 45° for
diamond and 6 = 90° for line formations.

To determine a formation position each robot builds a
list of all potential attachment sites for all of the robots
within sensor range based on the formation type it is
using. An attractive vector i1s generated towards the
closest site.

In addition to the motor schemas mentioned earlier,
a low-gain attractive force, move_to_unit_center, is
added to draw all of the robots together. As the team
converges, the robots “snap” into position, and a reg-
ular geometric shape emerges (Figure 2). Example
formations resulting from the integration of these be-
haviors are illustrated in Figure 6.

Note that for the diamond and square attachment site
geometries there are many possible robot team ar-
rangements. It is also possible that interaction with
obstacles will “unsnap” the formation into smaller
sub-formations. In most cases however, the forma-
tions re-group after splitting around obstacles.

2.2 Computational details

At each movement step, each motor schema computes
a vector. Each vector is multiplied by a gain value
indicating the relative importance of the associated
schema. The resulting vectors are then summed to
compute the overall movement direction. The param-
eters and gains for the motor schemas used in this
work are summarized in Table 1. OQutput vectors for
the motor schemas are computed as follows:



motor schema

| gain values |

avoid _static_obstacles 1.1
S=2.0mM=0.1

avoid_robots 1.1
S =2.0m M = 0.1m

move_to_goal 0.7
C =0.0m, D = 0.0m

maintain_formation 1.3
C =1.0m D = 0.0m

move_to_unit_center 0.6
C =3.0m, D =2.0m

noise 0.1
P = 5.0sec

Table 1: Motor schema parameter values and gains
used in formation experiments.
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Figure 3: Parameters used in the calculation of avoid
motor schema vectors. The repulsive potential in-
creases as the robot moves closer to the obstacle. The
object to be avoided is represented as a black circle at
the center of the illustration.

e avoid_static_obstacles: repulsion from detected
obstacles. The magnitude of repulsion varies with dis-
tance from each obstacle (Figure 3). When beyond
the sphere of influence (S), no repulsion is generated.
Within the sphere of influence, repulsion increases lin-
early until the robot reaches the safety margin. When
the robot is within the safety margin, the magnitude
of repulsion is co. The behavior is parameterized by
S, the sphere of influence beyond which detected ob-
stacles have no effect and M, the safety margin. A
separate vector is computed for each detected obsta-
cle as follows, where r i1s the distance from the center
of the robot to closest point on the obstacle:

Viirection = along a line from the center of the
obstacle to the robot, moving

moving away from obstacle

0 forr>S9
Vmagnitude == 5:1(4 for M <r S S

o forr< M

The overall avold_static_obstacles vector 1s com-
puted by summing the individual vectors calculated
for each obstacle.

Ballistic Zone

Controlled Zone

Robot

Figure 4: Parameters used in the calculation of main-
tain_formation and move_to_goal motor schema
The attractive potential decreases as the
robot moves into position.

vectors.

¢ maintain formation: an attractive force to draw
the robot into the proper formation position. The
magnitude of the vector varies with distance from the
formation position. Figure 4 illustrates three zones,
defined by distance from the position, used for mag-
nitude computation. The radii of these zones are pa-
rameters of the schema. Outside the controlled zone
attraction is set at a fixed maximum (1.0). Within
the controlled zone attraction decreases linearly from
1.0 to 0.0 at the boundary of the dead zone. Inside
the dead zone the magnitude is 0.0. The schema is
parameterized by (', the radius of the controlled zone;
and D, the radius of the dead zone. The vector is
computed as follows, where 7 is the distance from the
center of the robot to the goal location:

Viirection = along a line from the robot

to the goal, moving to the goal

1 forr>C
Vmagnitude = % for D<r < C
0 forr<D

e move_to_goal: attractive force to draw the robot
to a goal location. The goal is positioned 1000 me-
ters beyond the finish line. The robots never actually
reach the goal in experimental trials because each trial
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Figure 5: The simulation environment used in experiments. Robots (simulated Nomadic Technologies” Nomad-
150 robots) are initialized on the left. They navigate from left to right through the obstacles. Performance is

measured as time to cross the finish line.

terminates when the robots cross the finish line. This
schema is computed in the same manner as main-
tain_formation but with respect to the goal location
rather than a formation position.

e move_to_unit_center: a low-gain attractive force,
added to draw all of the robots together. Computed
in the same manner as move_to_goal and main-
tain_formation but with regard to the averaged lo-
cations of all other robots in sensor range.

e avoid _robots: repulsion from detected robots. This
schema’s output is computed in exactly the same man-
ner as avoid_obstacle except with respect to robots
instead of fixed obstacles.

e noise: generates movement in a pseudo-random di-
rection. Parameterized by P, persistence, the time in
seconds between each change in direction. The vector
is computed as follows:

Vidirection = pseudo-random direction

between 0 and 27

Vmagnitude =1

3 Simulation environment and
performance measurement

The task examined in these experiments is for a team
of robots to move across a field as quickly as possible
while maintaining a geometric formation and avoid-
ing collisions with obstacles and other robots. To en-
able comparative evaluation of the various formation
strategies presented above, we specify performance in
terms of the time for the entire team of robots to move
across the field. This is equivalent to the performance

of the last agent to cross the field. This metric was
chosen because it indicates, to some degree, the ex-
tent of cooperation between the robots. Other mea-
sures might show improved performance when indi-
vidual agents “abandon” their partners in an effort to
cross the finish line more rapidly.

Figure 5 illustrates the TeamBots simulation environ-
ment used in the experiments. The simulated field
measures 20m by 60m. 30 obstacles, each 1m? in area,
are distributed randomly about a 20 by 30 meter zone
in the middle of the field (5% obstacle coverage). The
robots are initialized on the left side of the field. They
then navigate to the right side, through the obstacles
to the finish line on the right. Timing stops when the
last robot crosses the line. The agents are initialized
line abreast on the left side of the field. This initial
configuration was chosen because it ensures all robots
are equidistant from the finish line. The first 20m of
the field are clear of obstacles to enable the robots to
settle into formation positions before encountering the
obstacle field. After crossing the obstacle-free section
the robots encounter a 30m long zone cluttered with
hazards.

Two aspects of the experimental setup should be con-
sidered when reviewing performance results. First,
the arrangement of agents at the beginning of each
run may bias the shape of the formation towards line
abreast. Second, the measured time to complete the
task includes the time taken for the agents to cross the
initial, obstacle-free area. Thus overall performance
is a combination of performance in obstacle-free and
cluttered terrain.
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Figure 6: Example four-robot formations resulting from the use of different attachment site geometries. From
left to right: column, line and diamond. In each of these short demonstration runs the robots were initialized in
proper formation positions, experimental runs are over a longer course.

4 Results

4.1 Geometries and scalability

As illustrated in Figure 6 the formation behaviors en-
able robot teams to maintain formation while navigat-
ing through an obstacle field. As expected, different
attachment site geometries lead to different team for-
mation geometries.

Additionally these behaviors are easily scalable. As
an example, consider the team of 32 robots illustrated
in Figure 7.

4.2 Performance

To evaluate the relative performance of the various
strategies, experiments were run in simulation with
one to eight robots using diamond, line and column
formation geometries.

In addition to three formation strategies, we also
compared the performance of a robot team using no
formation. This provides a benchmark to evaluate
whether robot teams benefit from the formation be-
haviors. The no_formation strategy utilizes the same
navigational behaviors as in the other strategies except
maintain formation is not activated. The group of
robots are still attracted to one another because the
move_to_unit_center motor schema is activated.

Performance was evaluated by running each simulated
robot team through each of five different randomly
generated worlds 50 times. A total of 250 simulations
were run for each number of robots for each formation
geometry, or a total of 8000 trials overall. The average
time for robots to complete the traverse 1s plotted for

each strategy in Figure 8.

The relative performance of teams using diamond, line
and column geometries mirrors similar results reported
earlier [4]. As was the case in the earlier experiments
in team navigation across an obstacle field we find
that the column formation strategy provides the best
performance. In the column formation the team as
a whole presents a smaller cross section to the obsta-
cles as it moves across the field. The line formation
performs worst because it presents the broadest cross
section.

It is interesting to note that for 1 to 7 robots not
only does the column strategy offer better performance
than other formation strategies, it also yields better
performance than no_formation. This indicates that
for small teams of robots, this strategy provides a co-
operative benefit to the team.

The performance of teams using no_formation im-
proves consistently as the number of robots increases.
Eventually, with groups of 8 robots, performance
is slightly better for the teams using no_formation.
This is probably because in all strategies except
no_formation, when a robot is slowed as it encoun-
ters an obstacle, other robots are likely to remain
near it and slow down also. In the no_formation
strategy, the low-gain move_to_unit_center behav-
ior slows progress of the other agents, but it will not
stop them. In addition the move_to_unit_center be-
havior provides the side-effect of pulling “stragglers”
out of the areas they may be stuck in.
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Figure 7: Example of a large-scale formation of 32 robots using the square attachment site geometry. The robots
(black circles) start on the left side of the field and navigate to the right around a group of obstacles in the middle
of the field. Note how the formation splits around the obstacle, but rejoins once past it.
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Figure 8: Average performance for navigating teams
using different formation strategies.

5 Conclusion

A new behavior-based approach for scalable multi-
robot formations was presented. The key extension
that distinguishes the new approach from previous
work 1s the perceptual technique used to determine
the proper formation position for each robot. Individ-
ual robots are not assigned to particular locations but
are instead attracted to the closest position in the for-
mation. The approach is based loosely on molecular
crystal formation: each robot is drawn to “attachment
sites” arranged with respect to its teammates. The
resulting robot team geometry is determined by the
arrangement of the attachment sites.

The design goals for the new strategy are met; specif-
ically:

e scalability: the approach easily scales to any number
of agents,

e locality: the behaviors depend only on the local sen-

sors of each agent,

o flexibility: the behaviors are flexible so as to support
many formation shapes.

Simulation experiments illustrate the approach and
demonstrate the relative performance of several for-
mation geometries. Performance was evaluated for
groups of 1 to 8 robots using each of three different for-
mation geometries. The results confirm earlier work
that indicates column formations are best for travers-

ing an obstacle field [5].

The approach is scalable because each agent only relies
on locally available information; namely, the locations
of nearby robots. Global communication of robot po-
sition is not required, instead, local sensors (perhaps
vision) can be utilized to generate effective formation
behavior in large robot teams. Scalability of the ap-
proach is demonstrated in a large team composed of
32 simulated robots.

5.1 Future work

It is important to realize that for some attachment
site geometries there are multiple arrangements of the
robot team. For instance, using the square geometry
it 1s possible to arrange four robots in a stable col-
umn, line or square. This was observed in simulation
experiments where a team formation would sometimes
“snap” apart to move around obstacles and then re-
join into a different overall shape. We plan to extend
the work to account for this and to enable the user to
specify an overall desired formation shape.

The TeamBots simulation environment that was used
to generate the results in this paper has also been
used extensively in earlier work to prototype behav-
iors for Nomadic Technologies Nomad-150 robots [3].
The TeamBots environment enables the same behav-



iors to run in simulation and on mobile robots. We
have found good correspondence between the per-
formance of control systems running in the Team-
Bots simulator and their behavior on real robots.
Even so, it is important to verify performance on
mobile robots. To support experiments on a large
numbers of robots, we are in the process of build-
ing a team of 10-20 Cye robots (manufactured by
Probotics, Inc.). The TeamBots environment is also
being modified to support this robot platform (Fig-
ure 9). More information on this project is available
online at http://www.cs.cmu.edu/ " coral/minnow.

Figure 9: We are planning future experiments on a
team of 10-20 Cye robots.
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